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Introduction
•	Obesity, a complex multifactorial disorder with  

genetic and environmental factors leading to 
increased morbidity and mortality, is a major  
health problem worldwide1

•	Glucagon-like peptide 1 (GLP-1) agonists such as 
liraglutide, tirzepatide, and semaglutide are approved 
for chronic weight management and type-2 diabetes2-4

•	The melanocortin pathway regulates energy balance 
and the melanocortin-4 receptor (MC4R) gene is  
the most commonly associated gene found in 
childhood obesity5

•	Melanocortin receptor 4 (MC4R) plays an important 
role in food intake behavior and energy homeostasis 
via the binding of its endogenous agonist 
α-melanocyte-stimulating hormone, whose release  
is stimulated by leptin5,6

•	Setmelanotide, an MC4R agonist, was approved by 
the FDA in 2020 for the indication of chronic weight 
management in adults and pediatrics 6 years of age 
with genetically-linked obesity. It acts on the MC4R 
pathway to reverse hyperphagia and promote weight 
loss through decreased caloric intake and increased 
energy expenditure7-9

•	There is, therefore, the potential that activating the 
MC4R pathway may be treatment option for general 
obesity9,10

•	Here we present studies that investigated the 
synergistic or additive effects of PL8905, a novel, 
selective MC4R agonist, in combination with GLP-1  
in diet-induced obese (DIO) rats

Methods 
•	Subcutaneous treatment with PL8905 0.3, 1, and  

3 mg/kg alone and in combination with continuous 
infusion of GLP-1 1 mg/kg/d was investigated in  
DIO rats (n=100) (Figure 1)

•	Sham dosing with saline (2 mL/kg) on days 0–3 was 
used to acclimate the rats to treatment

•	On days 5–9 animals were dosed subcutaneously 
with PL8905 twice daily, infused with GLP-1, or both

•	Vehicle was 3.2% mannitol dissolved in 50 mM Tris 
pH 7.4

•	Body and feed weight was measured on days 0–9; 
glucose levels on days −2 and 10

	–For the glucose tolerance test, glucose was 
administered PO at 1 g/kg. Glucose levels were 
taken at baseline  (prior to glucose administration) 
and at 15, 30, 60, 90, and 120 min post glucose 
administration 

Figure 1. Study Design
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Results
Body Weight Changes

•	Treatment with vehicle or GLP-1 alone resulted in a slight 
increase in body weight at day 9 (normalized to day 5) when 
compared to baseline (Figure 2)

•	PL8905 alone produced significant declines of ~1.6%–3.4% 
(P<0.01 vs vehicle, two-way ANOVA followed by Dunnett’s 
multiple comparisons)

•	PL8905 combined with GLP-1 produced greater declines of 
~2.9%–5.1% (P<0.01) 

Figure 2. Body Weight Changes Normalized to Day 5
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n=8 for each treatment group. Error bars are SEM. GLP-1, glucagon-like peptide 1.

Blood Glucose Levels

•	PL8905/GLP-1 groups showed significant (P<0.01) reduction 
of blood glucose AUC when comparing termination values 
with baseline 

•	PL8905 or GLP-1 treatment alone showed trends towards 
lower glucose AUC, but did not reach significance.

Figure 3. Glucose Tolerance Test: Baseline and Terminal Levels
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AUC glucose was from baseline to 120 min post glucose administration. **P<0.01 vs. baseline using two-way ANOVA followed 
by Dunnett’s multiple comparisons. AUC, area under the concentration time curve.

Feed Intake 
•	Feed intake in PL8905 groups and PL8905/GLP-1 

combination groups decreased vs vehicle, although it 
recovered on day 9 for PL8905 groups (Figure 4)

Figure 4. Feed Intake at 24 Hours for Days 1–8
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n=8 for each treatment group (sham n=4). Error bars are SEM. GLP-1, glucagon-like peptide 1. Sham is saline solution. Vehicle 
(placebo) is the solvent for the active treatments. 

Conclusions 
•	1 mg/kg/day GLP-1 had little effect on food intake, body weight, or blood glucose in DIO rats
•	PL8905 0.3–3 mg/kg when combined with 1 mg/kg/d GLP-1 showed significantly greater weight loss and 
glucose control in DIO rats than PL8905 monotherapy, GLP-1, or vehicle

•	Combination treatment with MC4R agonist and GLP-1 agonist may be a more effective therapy for diabetes 
and obesity
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