Atlanta, GA

Characterization of the Melanocortin Receptor 4 Oral Small Molecule Agonist PL7737

Obesity Week 2025 November 4–7, 2025

John Dodd, PhD¹; Carl Spana, PhD¹; Marie Makhlina, MSc¹; Lakmal W. Boteju, PhD¹

¹Palatin Technologies, Inc., Monmouth Junction, NJ

INTRODUCTION

- The melanocortin 4 receptor (MC4R) in the hypothalamus plays a central role in the regulation of stored energy and food intake and is a well validated target for obesity therapeutics¹
- To date there has been limited success in the identification of orally available, small molecule MC4R agonists with acceptable drug characteristics for clinical development
- Here, we describe the characterization of PL7737, an oral, small molecule MC4R agonist in development for various obesity etiologies
- Oral PL7737 is a potent MC4R agonist (2 nM EC₅₀, 95% E_{max}, data on file)
- PL7737 has reduced potency against MC1R
- PL7737 is inactive against MC3R
- PL7737 has received FDA orphan drug designation for obesity due to leptin receptor deficiency²

METHODS

- Oral PL7737 was evaluated for effects on weight loss and blood pressure in diet-induced obese (DIO) mice
- In addition, PL7737 was evaluated in hERG, Ames, and a 28-day non-GLP toxicology study in rats

Mouse Study 1: Two-Week Body Weight and Systolic Blood **Pressure Study**

- Male C57BL/6 DIO mice (n=6) were preconditioned on a high-fat diet for 6-8 weeks
- After acclimation, mice were dosed orally twice daily with vehicle or PL7737 (3, 10, or 20 mg/kg) for 7 days (**Figure 1**)
- Dosing by oral gavage occurred 1 h before lights out in the AM and 6 h after lights out in the PM
- A 7-day recovery period followed to assess weight regain
- Body weights were assessed daily, and blood pressure was continuously recorded
- Body weight was measured 1 h before lights out

Figure 1. Study Design for 2-Week Mouse Study

Acclimation Days 0-6	Dosing Days 7-14	Post-dosing period Days 15-22
	DIO (vehicle)	
High-fat diet	DIO + PL7737 3 mg/kg	
	DIO + PL7737 10 mg/kg	
	DIO + PL7737 20 mg/kg	
	Body weight measured dai	ily

Mouse Study 2: Single-Week Body Weight Study

- Male C57BL/6 DIO mice (n=9), aged 17 weeks, were preconditioned on a highfat diet for 11 weeks
- After acclimation to a reverse light cycle and handling, mice were dosed with PL7737 (3, 10, or 30 mg/kg) or vehicle
- Dosing occurred once per day 1 h before lights out on days 0-3
- Body weight was measured daily from day -3 to day 3 twice per day 1 h before lights out and 6 h after lights out

Rat Pharmacokinetic and Toxicology Analyses

- PL7737 pharmacokinetics
- Male Sprague-Dawley (SD) rats weighing 250±20 g were implanted with a telemetry device and allowed to recover for ≥1 week
- Rats were dosed with PL7737 at 10 or 30 mg/kg SC, 30 mg/kg PO, or 1 mg/kg IV
- Plasma PK samples were collected and sent to Frontage for analysis
- Toxicology (hERG and mutagenicity)
- Standard Ames test was performed per industry standard on a doseresponse curve of PL7737 starting with 100 µM to assess the mutagenic potential of PL77373
- Ames test, also known as standard bacterial reverse mutation assay, was performed using histidine-dependent Salmonella tester strains TA98, TA100, TA1535, and TA1537
- This test was performed both with and without S9 liver extract in order to account for metabolic activation
- Dose-response curve of PL7737 starting at 1 μM was tested for hERG activation in cell-based functional assays in Eurofins Discovery Services CardiacProfilerTM panel using the IonWorks Quattro electrophysiological
- PL7737 was also tested in hERG Radioligand Binding assay at a concentration of 10 µM
- 28-day non-GLP toxicology study in rats
- PL7737 was given at 25 mg/kg orally twice daily for a period of 28 days and assessed for the possible toxic effects in both male and female SD rats (n=5 each sex)
- Points assessed at the end of the study included: body weight gain, food and water consumption, clinical chemistry, hematology, complete blood count (CBC), blood coagulation, external and internal gross observation, organ weight, and histopathological examination

RESULTS

- In Mouse Study 1, PL7737-treated animals showed rapid weight loss, which was statistically significant for the 20 mg/kg group (Figure 2)
- Oral PL7737 did not have an effect on systolic blood pressure acutely or chronically at any dose evaluated (Figure 3)

Figure 2. Body Weight Change in DIO Mice (Vehicle Subtracted) Before and After

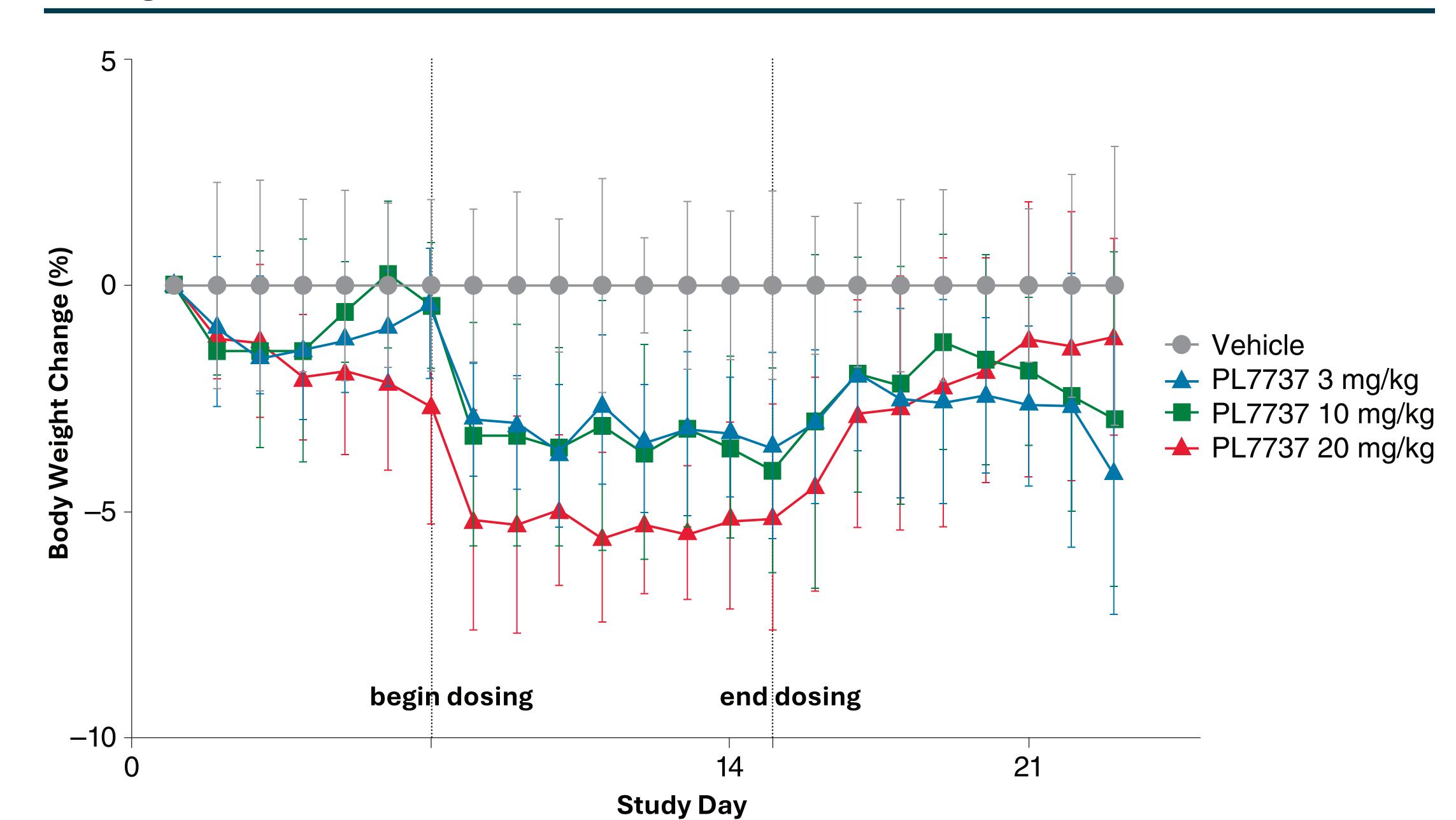
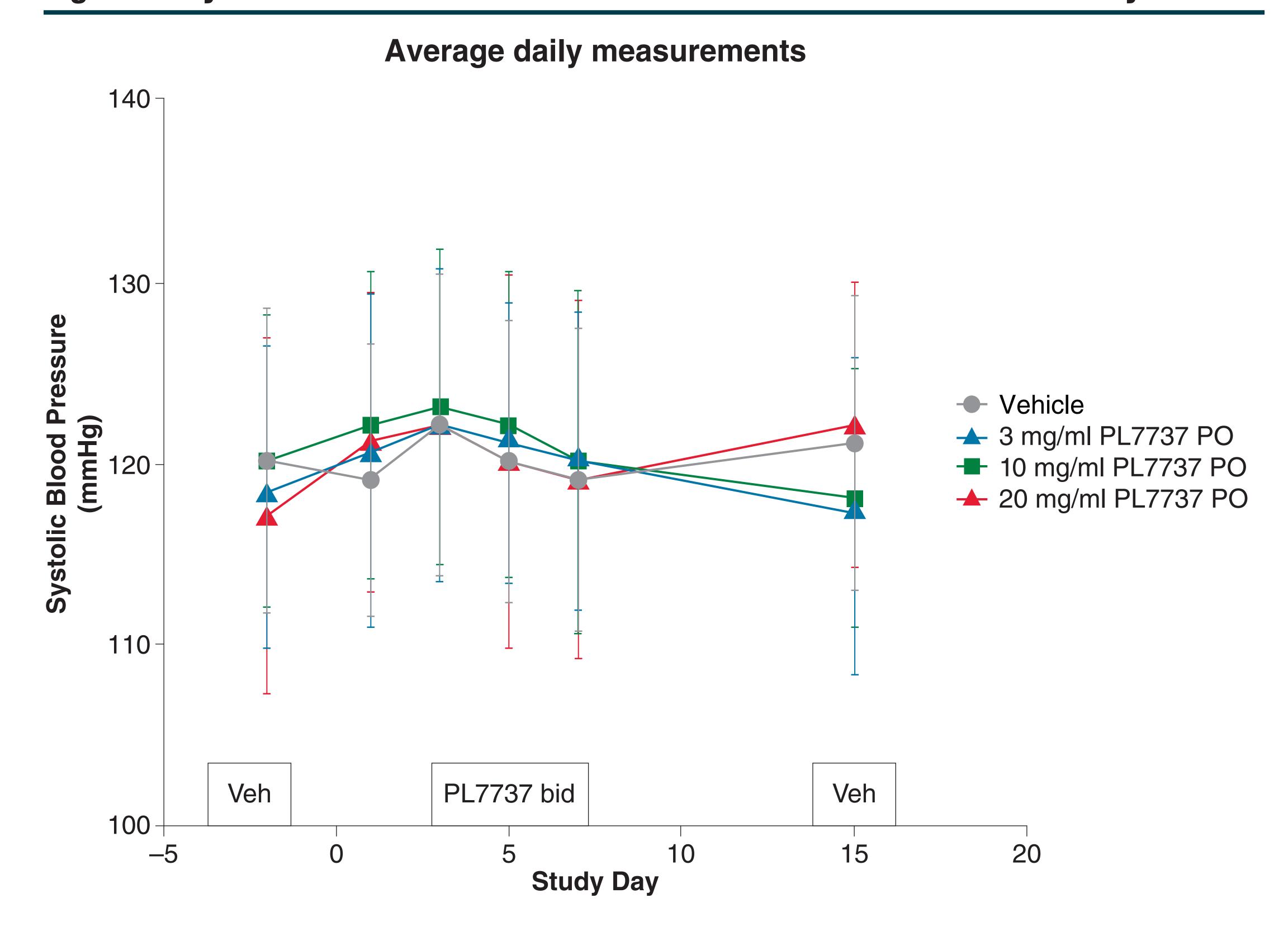
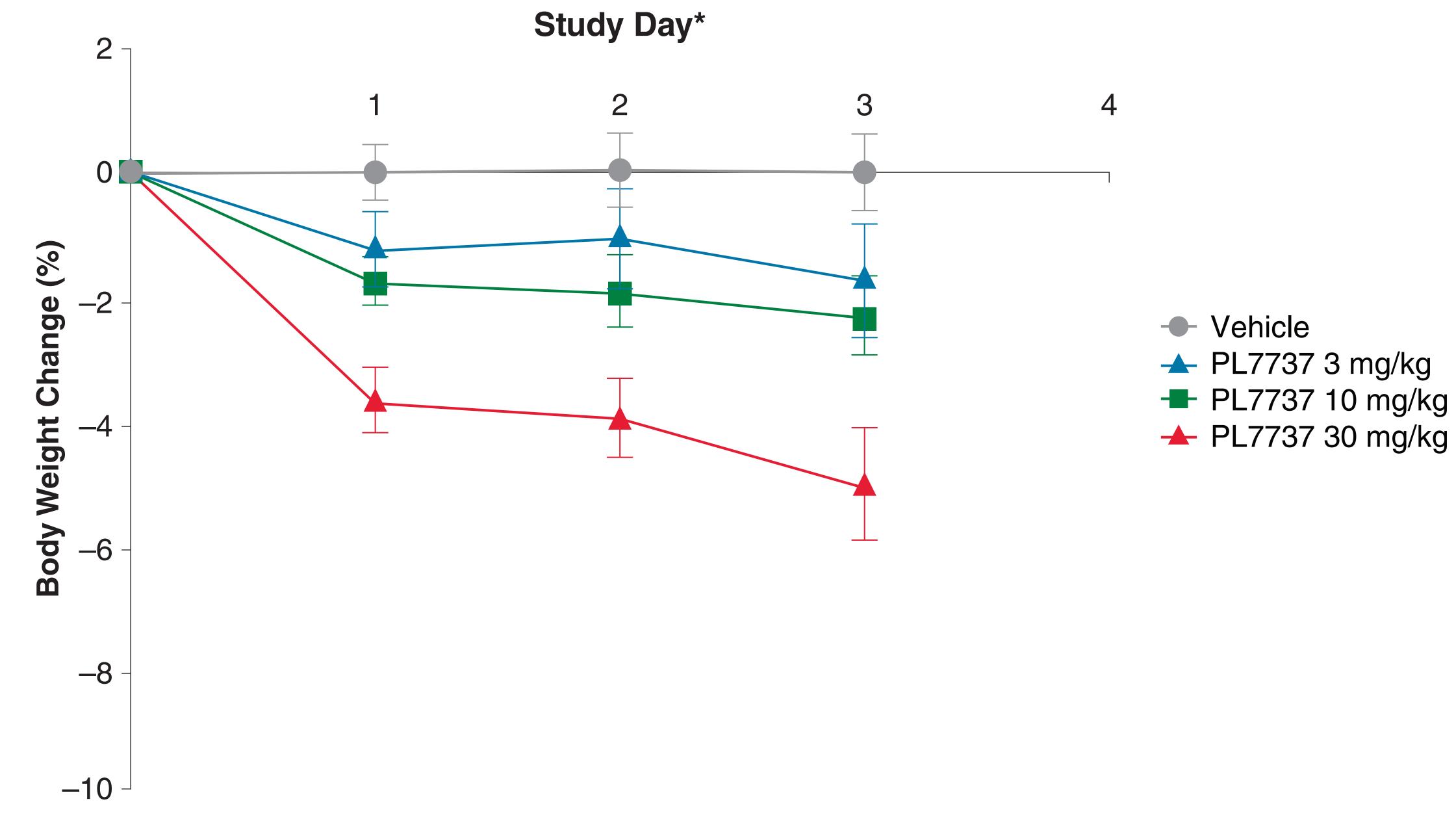




Figure 3. Systolic Blood Pressure Not Affected in DIO Mice with Telemetry

- In Mouse Study 2, oral PL7737 reduced body weight in DIO mice in a dosedependent manner compared to vehicle control
- The 30 mg/kg BID dose resulted in a significant 5% (vehicle subtracted) reduction in body weight (P<0.05) (Figure 4)

Figure 4. Body Weight Change in DIO Mice (Vehicle Subtracted)

- Rat pharmacology and safety studies
 - PL7737 had an oral bioavailability of ≈50% in rats with a half-life >3 hours
 - There were no effects in hERG (>33 μM) or Ames mutagenicity assays
 - The 28-day non-GLP toxicity study showed no evidence of toxicity

CONCLUSIONS

- Long-term management of weight loss will require multiple safe and effective mechanisms
- PL7737 is a potent MC4R agonist that can cause significant weight loss when delivered orally
- Preclinical studies indicate that oral PL7737 does not affect blood pressure or prolong the QT_c segment
- The emerging preclinical efficacy and toxicology profile supports the clinical development of PL7737 as an oral treatment for obesity
- Investigational new drug-enabling studies have been initiated and phase 1 safety studies are planned

Funding: This study was funded by Palatin Technologies, Inc. (Monmouth Junction, New Jersey).

Acknowledgments: Medical writing support was provided by Hannah Riley Knight, PhD, from Citrus Health Group, Inc. (Chicago, Illinois), and was funded by Palatin Technologies, Inc. (Monmouth Junction, New Jersey).

Disclosures: Carl Spana, John Dodd, and Lakmal W. Boteju are employees of Palatin Technologies, Inc.

References: 1. Singh RK, et al. CR Biol. 2017;340(2):87-108. 2. Orphan Drug Designations and Approvals. https://www.accessdata.fda.gov/scripts/opdlisting/oopd/detailedIndex. cfm?cfgridkey=1065924. 3. Maron DM, Ames BN. Mutat Res. 1983;113(3-4):173-215.